
H. Yip, J. M. Smillie Edinburgh Student Journal of Science

An Analysis of the Restricted Euler
Problem Using Symplectic Integrators

Henry Yip∗‡1 , Jennifer M. Smillie†1

1 School of Physics and Astronomy, University of Edinburgh

Open Access

Received
29 Oct 2024

Revised
17 Nov 2024

Accepted
05 Jan 2025

Published
18 Feb 2025

Abstract
The Three-Body Problem is far from fully solved despite centuries of effort.
The restricted Euler Problem is a special case in which two bodies are fixed in
place, resulting in two Poisson-commuting conserved quantities, allowing the
system to be fully integrable by the Liouville-Arnold theorem. We analysed
the restricted Euler problem using an order-4 symplectic integrator, which
conserves the Hamiltonian. We used this integrator to simulate the restricted
Euler problem and recovered known orbits from the literature.

DOI: 10.2218/esjs.10064 ISSN 3049-7930

Introduction to the Restricted Euler Problem
Consider a two-dimensional system and consider the z-axis plotted against the x-axis. The two masses
m+ and m− are located at (0, b) and (0,−b) respectively whereas the third mass can move around
freely (Ó’Mathúna 2008). We then try to find the trajectory of the third particle based on Newton’s
gravitational law. As two of the masses are stationary, this problem is also called the problem of two
fixed centers.

The problem is of interest because it is one of the restricted cases of the three-body problem in which
the system is fully integrable, i.e. the system is fully analytic, allowing for prediction of orbits.

We first express the system in terms of planar prolate spheroidal coordinates:

x = ±
√
R2 − b2 sinσ

z = R cosσ

where R ≥ 0, σ ∈ [0, π]. It is similar to the polar coordinate system but with two foci. Without loss of
generality, we consider b = 1.

Expressing Prolate Spheroidal Coordinates using Cartesian Coordinates
In this section, we will express prolate spheroidal coordinates in terms of cartesian coordinates. Knowing
the relation between both systems is useful as both are commonly used. We will focus on x > 0. When
x < 0, the values of R and σ correspond to those for |x|.

As cosσ is only negative in the range π
2 < σ < π, we have z > 0 for 0 < σ < π

2 and z < 0 for
π
2 < σ < π. Due to the nature of the solution, which will be apparent below, we will consider these two
cases separately, and conclude by discussing z = 0.

∗Student Author
‡Email: henry36c@gmail.com
†Corresponding academic contact: j.m.smillie@ed.ac.uk

1

https://orcid.org/0009-0000-6237-7661
https://orcid.org/0000-0003-2333-5316
https://doi.org/10.2218/esjs.10064
mailto:henry36c@gmail.com
mailto:j.m.smillie@ed.ac.uk

Edinburgh Student Journal of Science H. Yip, J. M. Smillie

Case for z > 0

Using R = z
cosσ , we can substitute one of the equations into the other:

x = sinσ

√(z

cosσ

)2
− 1

=

√
z2 − cos2 σ

cos2 σ
sinσ

x2 =
(z2 − 1 + sin2 σ)(sin2 σ)

1− sin2 σ

x2 = sin2 σ(x2 + z2 − 1 + sin2 σ)

where we have used cosσ =
√
1− sin2 σ. This is only valid as 0 ≤ σ ≤ π

2 , which corresponds to z > 0.
This is why we considered z separately.

By letting u = sin2 σ, we have:

u2 + (x2 + z2 − 1)u− x2 = 0.

Using the quadratic formula, and noting that
√
u = sinσ, we arrive at

arcsin
√
u = σz>0

where

u =
−(x2 + z2 − 1) +

√
(x2 + z2 − 1)2 + 4x2

2
.

Case for z < 0

We have assumed x > 0 and found the solution for z > 0. We want to find the solution for z < 0 while
keeping x > 0.

Note that sin (π − σ) = sinσ and cos (π − σ) = − cosσ. As x ∝ sinσ and z ∝ cosσ, by letting
σz<0 = π − σz>0, we can find solutions for z < 0.

Case for z = 0

We have:

σ =

{
arcsin

√
u for z > 0

π − arcsin
√
u for z < 0

where

u =
−(x2 + z2 − 1) +

√
(x2 + z2 − 1)2 + 4x2

2
.

By continuity, we have σ = π
2 . Another way to think of it is that this coordinate system is the polar

coordinate system being stretched in the oblate direction and mirrored at the z-axis. Therefore, similar
to the polar coordinate system, when z = 0, the angle is π

2 .

Listing the Conserved Quantities
The conserved quantities are important to both verify theoretical models and computational results and
show the system is integrable.

It is important to note that both linear and angular momentum are not conserved, as two of the bodies
are fixed in place, implying the existence of external forces. This can be illustrated by releasing the third
body a distance away from the two fixed bodies. The initial linear and angular momentum are zero, but
the third body is attracted by the two fixed bodies and accelerates towards them.

2

H. Yip, J. M. Smillie Edinburgh Student Journal of Science

We define two constants, g and h, below (Dullin et al. 2016):

g =
1

2
(zpx − xpz)

2
+

1

2
b2p2z + bz

(
m1√

(z + b)2 + x2
− m2√

(z − b)2 + x2

)

h =
1

2

(
p2z + p2x

)
− m1√

(z + b)2 + x2
− m2√

(z − b)2 + x2

where b, as defined above, is the distance of the two centers from the origin, and px and pz are momentum
in the x and z directions, respectively. We take b = 1, and therefore:

g =
1

2
(zpx − xpz)

2
+

1

2
p2z + bz

(
m1√

(z + 1)2 + x2
− m2√

(z − 1)2 + x2

)

h =
1

2

(
p2z + p2x

)
− m1√

(z + 1)2 + x2
− m2√

(z − 1)2 + x2

where g is a symmetry in the phase space, and h is the energy of the third particle. It can also be shown
that g is a first integral of motion and the two constants commute under the Poisson bracket. Hence,
the system is integrable by the Liouville-Arnold theorem.

Choosing an Integration Method for Numerical Simulation
Below, we aim to choose an integration method that can be used for a general three-body problem, so we
assume all three bodies can move freely. As we are integrating a Liouville integrable system, we choose
symplectic integrators, which conserve the Hamiltonian. This is discussed extensively in Casey (2020),
which we will use for the whole section.

Starting from i = 1, we denote each particle by m (m ranges from 1-3). Using x and v to represent
positions and velocities, respectively, we first run:

v(i)m = v(i−1)
m + cia(x

(i−1)
m)dt

for each m, in order of m = 1, m = 2, then m = 3. ci is an integer, which is further explained below. dt
is the step size in the numerical simulation. After this step, we run:

x(i)
m = x(i−1)

m + div
(i)
m dt

for each m, as above. We have di as an integer. After these two steps are run, we increase i by 1. This
process repeats until i reaches n, where n is defined as the order of the symplectic integrator. The whole
process is illustrated in the example below, corresponding to n = 2:

Particle 1, Steps 1-6

v
(1)
1 = v(0) + c1a(x

(0))dt

x
(1)
1 = x(0) + d1v

(1)dt

v
(1)
2 = v(0) + c1a(x

(0))dt

x
(1)
2 = x(0) + d1v

(1)dt

v
(1)
3 = v(0) + c1a(x

(0))dt

x
(1)
3 = x(0) + d1v

(1)dt

Particle 2, Steps 7-12

v
(2)
1 = v(1) + c2a(x

(1))dt

x
(2)
1 = x(1) + d2v

(2)dt

v
(2)
2 = v(1) + c2a(x

(1))dt

x
(2)
2 = x(1) + d2v

(2)dt

v
(2)
3 = v(1) + c2a(x

(1))dt

x
(2)
3 = x(1) + d2v

(2)dt

For compactness, we can put all the ci and di into a vector:

3

Edinburgh Student Journal of Science H. Yip, J. M. Smillie

c = [c1, c2, ..., cn−1, cn]

d = [d1, d2, ..., dn−1, dn].

Furthermore, we can put c and d into a matrix:

A =

(
c
d

)
.

Types of Symplectic Integrators
It has been shown by Casey (2020), firstly, that

A =

(
1
1

)
leads to a first-order symplectic integration method; this is the Euler method. Meanwhile,

A =

(
1
2

1
2

1 0

)
leads to a second-order symplectic integration method; the Verlet method. Furthermore,

A =

[
7
24

3
4

−1
24

2
3

−2
3 1

]
leads to a third-order symplectic integration method, referred to as the Ruth method. And lastly,

A =

 1

2(2−21/3)
1−21/3

2(2−21/3)
1−21/3

2(2−21/3)
1

2(2−21/3)
1

2−21/3
−21/3

2−21/3
1

2−21/3
0


leads to a fourth-order symplectic integration method, which will be referred to as the Neri method. In
theory, a nth order symplectic method is supposed to have an error of O(hn), where h is the step size of
the system. Therefore, the error should drop as the order of the method increases.

Metrics for Choosing an Integration Method
We used several metrics to evaluate the precision of the numerical methods specified above. As we built
this code with the purpose of simulating the general three-body problem, these metrics were compared
across three different orbits, namely the Figure-8 orbit, the Bumblebee orbit, and the Moth orbit. Each
orbit was simulated with a total of 100, 000 steps, using a step size of 0.0001.

The first metric compares the error of energy to the initial energy, which can be named as energy
deviation:

∆E

E0
=

∣∣∣∣Emax − Emin

E0

∣∣∣∣
where E0 is the energy at the start of the simulation.

The second metric is named the momentum difference. For many systems, the initial momentum is zero.
Therefore, a momentum deviation cannot be well defined. Instead, we will only check the momentum
difference, which can be defined as:

Max ∆px = |pmax,x − pmin,x|
Max ∆py = |pmax,y − pmin,y|.

4

H. Yip, J. M. Smillie Edinburgh Student Journal of Science

Method Orbit Energy Deviation Max ∆px Max ∆py Run Time (s)

Neri (Order 4) Figure-8 6.124× 10−14 1.040× 10−13 4.852× 10−14 29.60
Ruth (Order 3) Figure-8 1.280× 10−13 5.307× 10−14 3.048× 10−14 25.91
Verlet (Order 2) Figure-8 5.893× 10−9 3.841× 10−14 2.232× 10−14 12.31
Euler (Order 1) Figure-8 3.601× 10−5 3.686× 10−14 3.009× 10−14 15.53

Neri (Order 4) Bumblebee 8.058× 10−3 4.591× 10−14 9.246× 10−14 27.79
Ruth (Order 3) Bumblebee 8.058× 10−3 7.394× 10−14 4.249× 10−14 23.84
Verlet (Order 2) Bumblebee 9.676× 10−2 2.287× 10−14 1.882× 10−14 11.56
Euler (Order 1) Bumblebee 2.4329 3.625× 10−14 2.312× 10−14 15.71

Neri (Order 4) Moth 1.459× 10−9 4.874× 10−14 8.693× 10−14 28.06
Ruth (Order 3) Moth 2.143× 10−8 3.486× 10−14 3.185× 10−14 22.39
Verlet (Order 2) Moth 4.775× 10−5 2.387× 10−14 3.835× 10−14 11.55
Euler (Order 1) Moth 0.02070 2.031× 10−14 2.183× 10−14 13.76

Table 1: Comparison of Ruth, Neri, Verlet, and Euler methods across different orbits.

The third metric is the run time. In our scenario, most simulations are relatively short, so it is not as
important as the metrics above. Below all the metrics are compared for each orbit.

First, the Euler method has the highest energy inaccuracy by far, while having a higher running time
than the Verlet method. The latter result is surprising, and is possibly due to the 0 entry in the d2
corresponding to the Verlet method. Besides, it can be seen that the Neri method conserves energy
much better than other methods, especially in the Moth orbit simulation. More interestingly, the Verlet
method conserves momentum slightly better than methods with higher orders. However, the difference is
too small to be significant (all of order 10−14), and may not be accurate, as they are close to the machine
error for double-precision floating-point numbers in Python, which is O(10−16). Even though the Neri
method causes a longer run time, the difference is negligible. Therefore, the Neri method is chosen.

Results

Types of Orbits
We have reproduced three types of orbits as described in Dullin et al. (2016). First, we reproduced the
satellite orbit, in which the z-coordinate of the third body never changes sign. In other words, the third
body never seems to pass through the mid-point between the two fixed centers. Next, we reproduced the
planetary orbit, in which the third body almost forms a complete ellipse around the two centers. Finally,
we reproduced the lemniscate orbit, in which the third body passes through the line connecting the two
fixed centers, unlike both satellite and planetary orbits. The trajectories of the orbits are included in
the GitHub repository available at the end of this paper.

Predicting Type of Orbit from Integrals of Motion
Referring to g and h, as defined above, the value of h must be negative, as we are solving a bounded
system, but the values for g greatly vary. It has been shown in literature (Dullin et al. 2016) that g and
h, the integrals of motion shown above, can predict the type of orbit. In general, negative g corresponds
to a satellite orbit, a slightly positive g (say, between 0 and 1) corresponds to a lemniscate orbit, and a
larger g corresponds to a planetary orbit. This is different for different combinations of m+ and m−, but
we only considered the symmetric case. We have verified that the satellite orbit corresponds to g < 0
and h < 0, the lemniscate orbit corresponds to 0 < g < 1 and −1 < h < 0, and the planetary orbit
corresponds to g > 1 and −0.5 < h < 0, which agrees with literature (Dullin et al. 2016).

5

Edinburgh Student Journal of Science H. Yip, J. M. Smillie

Textbook Verification by Comparing Eccentricities and Semi-major Axes
To conclude, we can compare with the constants defined by Ó’Mathúna (2008). It is defined that M and
N are constants, where

1

2

(
R2 − b2 cos2 σ

)2
R2 − b2

Ṙ2 = ER2 + µR+M

1

2

(
R2 − b2 cos2 σ

)2
σ̇2 = −Eb2 cos2 σ +

(m+ −m−)µb cosσ

m+ +m−
+N.

We have µ = G(m1 +m2) and G is the gravitational constant between particles, which is usually taken
as 1 for simplicity.

It is stated in the textbook that when η2 < 1, it corresponds to a closed elliptic orbit of eccentricity η
and semimajor axis p. The two constants are defined as:

p =
O2

2

η =
1

p

where O =
√
2N is a constant with units of angular momentum. In our code, only the planetary orbit

satisfies η2 < 1. This agrees with theoretical results, as the planetary orbit is the only type of closed
orbit.

To verify our estimate of the semi-major axis p is accurate, we have also measured the semi-major axis of
a planetary orbit directly from its trajectories in the x-z plane. If the code is accurate, using η = 1

p , we
should obtain p = 2.35 if we use an orbit with η = 0.425. Instead, we obtained p = 2.53 with a standard
deviation of 0.133, showing a small discrepancy. This inaccuracy should be investigated over a range of
η values.

Conclusion
We selected an integration method and used it to analyze Euler’s Three Body Problem. We demonstrated
that the three types of orbits in the Euler Problem can be recreated. Further work could involve
simulating and exploring different cases discussed by Ó’Mathúna (2008), as well as comparing results
with other integrator types, such as regularized integrators and adaptive step size integrators.

Data Availability
The code used in this project, as well as some additional diagrams are available on GitHub:
https://github.com/Henry-Yip/Three_Body_Problem_Code.

Acknowledgements
I would like to express my gratitude to Prof. Jenni Smillie for generously taking the time to supervise
this project. I am also thankful to the School of Physics and Astronomy, University of Edinburgh for
funding this project through the Career Development Scholarship. Additionally, I would like to thank
Allison Lau (University of Toronto) for her encouraging comments.

References
Casey, R. M. ‘Computer Implementation of Symplectic Integrators and Their Applications to the N-body

Problem’ (2020)
Dullin, H. R. and Montgomery, R. ‘Syzygies in the Two Center Problem’ Nonlinearity 29 4 (2016)
Ó’Mathúna, D. ‘Integrable Systems in Celestial Mechanics’ (Springer Science & Business Media; 2008)

6

https://github.com/Henry-Yip/Three_Body_Problem_Code
https://www.proquest.com/dissertations-theses/computer-implementation-symplectic-integrators/docview/2406969341/se-2?accountid=10673
https://doi.org/10.1088/0951-7715/29/4/1212

